[image: image5.png]Solution Architecture

g

Integration Lab

[image: image5.png][image: image6.png]

 S.A.I.L Initiative

Leverage COTS, White Paper

Assuring the business value of technology
Contents

iContents

Executive Summary
4
What is S.A.I.L. ?
4
Why is S.A.I.L. Important?
4
How is S.A.I.L. Unique?
5
State of the Industry
7
Challenges to Implementation Success
7
IT Projects Are Failing 54% of the Time (72% in Government) - Thrashing
7
Rate Of Change Increases Information Overload
8
Information Overload Obscures Visibility
8
Which Information Can Be Trusted, Which Can be Ignored?
8
Standards gaps forces new validation approaches
9
Components add complexity
9
Component Interoperability risks
10
Broken Information Assurance links
10
Unknown Behavior of Components in New Contexts and Black box Engineering Risks
10
Two-way Assurance
10
No IT Validation Metrics
10
TRADITIONAL APPROACHES TO COPING
11
Approach #1: Internal Testing:
11
Approach #2: Outsourced Testing and Research:
11
Approach #3: Solution Architecture Collaboratory:
12
Insufficiencies in these approaches
12
The Synergy of Virtual Collaboration
14
Essential Requirements of the Synergistic Virtual Collaboration Model
14
The IT Virtual Collaboratory proving ground
14
The S.A.I.L. Alternative
15
KEY BREAKTHROUGHS
16
First Technical Breakthrough
16
A New Quantitative Metric: Strength of Evidence
16
S.A.I.L. Risk Metrics
17
Environment Context
18
Second Technical Breakthrough
18
Collaborative Knowledge Base Population
18
Common Architecture Language: Common Criteria
19
Third Technical Breakthrough
19
Dealing with the Complexity Challenge Using Inference Engines
19
Architecting with Components and Interfaces
19
S.A.I.L. Use Cases
21
Procurement Official
21
Solution Architect
21
Project Managers (Enterprise Builder, Owner/Manager)
21
CIO’s, CTO’s
21
Conclusion
22
Contact Information
23
APPENDIX
24
Breakthrough Number 1 (More Reading)
24
S.A.I.L. Risk Metrics
24
Environment Context
24
Interoperability Risk Example
24
Models for Other IT architecture capabilities
25
Models for the Business itself
25
Business Requirements Patterns
25
Use of the Risk Metrics
25
Operational Risk
26
Breakthrough Number 2 (More Reading)
26
Collaborative Knowledge Base Population
26
INCREMENTAL APPROACH TO EXTENDING THE FEATURE MODEL
28
Machine learning
28
Sparse Data
28
Architectural Methodology Supporting S.A.I.L.
28
Definition of Architectonics
29
The Role of Standards in the Methodology
30
Obtaining Valid Data
32
IT Supply Chain Information Sources
32
Other Important Evaluation Considerations
32
The Result: Up-to-date, Context-based Assessments
33
Architectural Validation Process
34
Key Architecture Validation Issues
35
Common Criteria Lexicon
35
Taxonomy
35
Standards Specification
35
Common Criteria (Collaborative Lexicon and Taxonomy Evolution)
35
The Impact of Common Criteria on Interoperability
36
Using the Common Criteria to Clarify Real Contextual Need
36
The LEXICON Creation Process
37
Breakthrough Number 3 (More Reading)
39
Dealing With Complexity Using Inference Engines: Origins
39
Assurance Risks Introduced by CBSD
39
Mitigating the Risks via Automated Reasoning
39
Technical Approach: Production Rule Technology
40
Why Tables Are Not Sufficient
41
Are Production Rules Sufficient?
41
Complexity Management through Abstraction
42
Dynamic context agility
42

Introduction

“I feel like I’m shooting at black cats in a dark room while wearing oven mitts, ear plugs, dark sunglasses and a straight jacket… as soon as feel that I understand the context well enough to make a decision, everything changes and the vendors have upgraded their products …. if anyone does have the information I really need, it’s usually the competition, and we don’t share that well.”

-CIO; Secure e-Biz Conference

“Six years ago we said this was the answer, but it couldn’t be done… this is impressive.”

-- Information Systems Process Council Member, Boeing Corp. 2001
This white paper presents the technical basis of a breakthrough solution to the heretofore unsolvable, singly most debilitating challenge facing the IT industry right now. As IT leaders and decision-makers in all domains attempt to design, procure, construct and manage architectures from heterogeneous components in a world where the facts change faster than the ability to assimilate them, the IT industry is thrashing. This thrashing is a an industry crisis and is spilling over into our economy with far-reaching implications

This paper describes the technical genesis of S.A.I.L. , the breakthrough tool that can finally address IT architectures from a component-based perspective, in context, and in spite of the exponential complexity and fast pace of our industry

This paper explains how S.A.I.L. works by uniquely leveraging three complimentary factors: proven technology, specific understanding of human processes, and a unique methodology that aggregates leading-edge architectural thinking. The resulting synergy of this combination ultimately gives us a method and repository that can handle the raw information overload that otherwise obscures the clarity necessary for thinking about and making sound IT decisions. This paper then details how and why neither traditional approaches, nor any subset of the S.A.I.L. alone must continue to fail.

BluePhophet.net is the code name for the follow on to the DARPA Distributed Component-based Architecture Modeling project (DCAM) that was a very successful seed program in ISO. Though this project received many accolades from DARPA, government and industry, the shutting down of the Information Systems Office resulted in the termination of funding for phase 3. BluePhophet.net represents a vision for Phase 3 in or outside of DARPA. This white paper defines a technical path of solving one of IT’s greatest challenges to date; forecasting the risk and composability of heterogeneous COTS components based on partial and incomplete knowledge of component interdependencies, securability and interoperation.

Executive Summary

What is S.A.I.L. ?

S.A.I.L. operationalizes as a virtual lab, a set of best practices methods, services and tools that addresses Solution Architecture modeling, assessment and validation providing measurable assurance and risk metrics for the assessment and management of IT Asset portfolios.
 By using S.A.I.L.., technology insertion and complexity problems can be quickly identified and proactively resolved, with measurable confidence, before buying or installing any new system. S.A.I.L. therefore also equips business and technology planners in today’s marketplace with the first comprehensive set of metrics for measuring key heterogeneous IT Asset Portfolio heuristics, such as Interoperability Risk.

S.A.I.L. metrics are based on a methodology arising from a collaboratory model that quantifies “strength of evidence” as a metric culled from weighted sources ranging from marketing literature to real 3rd-party implementation experience. Once such a metric is available, technology, in the form of production rule inferencing, is used by S.A.I.L. to reveal nth order consequences of any given change. S.A.I.L. also provides “drill-down” mechanisms to learn why certain consequences occur, and therefore how to manipulate the outcome by making other changes in the architectural model. S.A.I.L. is designed to support additional sets of focussed rule bases for the analysis of other IT Asset Portfolio characteristics including:

	· securability

· interoperability
· extensibility
	· scalability

· maintainability

· connectivity
	· business fit
· replicable

· open

Why is S.A.I.L. Important?

The rise of COTS solutions has largely driven the need for immediate end-to-end solutions, accelerating the shift from software development to component based “Plug and Play” engineering approaches. In attempting to deliver component based systems in “Internet time”, we still experience project failure rates of over 52% to 78%
. The failures are attributed to the inherent complexity of technology components, interfaces and systems coupled with the equally complex user environments in which these systems operate. The lack of reliable and in-context solution architecture information accounts for over 34% of IT program failures, resulting in billions in avoidable waste each year.
Yet, the component based system development paradigm holds much promise in terms of new economies of scale by encapsulating established, frequently required complex capabilities within components that are available off the shelf. It also promises reduced risk through the employment of known capabilities whose performance and functional behavior have been proven in previously deployed systems.

But many enterprises have failed to adapt to using components successfully and still experience high project failure rates. Some of the roots of their failures include: thrashing, the intense rate of change, information overload, and (in spite of the Internet’s burgeoning stream of data) a dearth of relevant, trustable, in-context technology information.

This increasing complexity is the core challenge faced by our industry today. Massive proliferation of components at all levels, and the accompanying explosion of interfaces makes informal human reasoning error-prone and unmanageable. The critical question is now; “How can we define assurance within and between all IT entities as measurable quantities?”

That almost half of our IT projects succeed in spite of the complexity and proliferation of component-based engineering
 is a tribute to how hard our industry strives to collaborate. Assured successes will occur only when architecture assurance can be measured, managed and delivered as part of the system. Until now, it has been very difficult to measure architectural assurance. Assurance, in terms of the sustainable features and functions, robustness, service assurance, run-time performance, usability, flexibility, portability, integration and connectivity, openness and compliance with standards, can only be managed by a collaboratory approach and by using automated reasoning. Assurance can be delivered in terms of branding.
The collaboratory approach is gaining momentum in government and industry as a modality to address common experience that must be shared to mutually succeed in a global economy that is faced with ever increasing demands for functionality and speed, and the resulting exponential increases in complexity. Collaboratory models have been successful within domains where organizations share information to establish industry wide benchmarks. IT industry collaboration to date has been primarily in the area of standards, which have generally not been considered successful. The Interoperability Collaboratory Model successfully prototyped by the Interoperability Clearinghouse and incorporated in S.A.I.L. reverses this trend through social forces -- incentives for all IT stakeholders wherever IT is utilized. Stakeholders such as end users, integrators, standards organizations, vendors and market research analysts each have key roles, and tangible incentives for fulfilling their respective roles. Collaboratively collected data within context of the S.A.I.L. will enable real-time validation and assurance activities ranging from architecture validation and assurance, requirements engineering, component selection, interoperability validation, secure e-commerce to asset management, value chain partnering and horizontal integration.

How is S.A.I.L. Unique?

There are three key elements of the S.A.I.L. solution, each of which depends and supports the other synergistically. These elements are described in more detail in the appendix:

1) Collaborative IT Research: SAIL provides IT decision makers with an industry supported research and validation consortia that details market capabilities via contextual and evidenced based solution sets. These solution models provide implementers a view of past implementation and testing data that improves understanding of market capabilities and best practices thereby reducing risk and cost associated with COTS integration.
2) Architecture Assurance Methodology: This is a human-driven process that within two to three cycles captures data and populates the repositories with useful facts and then keeping the database(s) current and relevant. The S.A.I.L. methodology was evolved by the Interoperability Clearinghouse from several key industry architecture standards efforts, incorporating best practices from 110 of the most progressive IT organizations in the world. It is designed to produce XML based templates that can be “plugged into” any architecture framework.
3) SOA Knowledge Management: These are virtual, dynamic, and massively extensible databases that contain the information, models, asset information and contextual data which is used by the inference engine and user interface. These can be local, distributed, and or shared. The S.A.I.L. basic tool set includes utilities implementing local repositories and for accessing shared repositories. The basic tool may include a static, but fairly large initial repository containing a wide array of basic product information as may be provided by various vendor, integrator, research, and standards organizations for distribution with the basic tool.

4) Education and Mentoring: Recognizing the role of education as a critical success factor of any transformation effort, ICH and its public/private partners established a series of workshops and forums that the practical applications of these processes, and their outcomes, can be exposed in an open and collaborative conference. The SecurE-Biz Executive Summit provides government and industry a low cost, high impact vehicle by which best practices and lessons learned can be shared. This forum brings together stake holders from the entire value chain including; Govt/Industry Practitioners, Policy leaders, standards bodies, academia, domain industry groups, solution providers, and open source resources. Participation options and past programs are posted at www.SecurE-Biz.net

State of the Industry

Challenges to Implementation Success
The Executive Summary describes two key problems facing the IT industry, complexity and rate of change. Both of these are side effects of the Internet, which has accelerated the shift away from software development towards component integration.

Under the pre-Internet era system development paradigm, the rate of change was controllable, complexity was self-contained and understandable, and project timeframes were much longer (6 to 8 months minimum and longer). With the shift of computing platforms from software development focused to the plug-and-play components integration, industry now must significantly alter its SDLC process to address COTS interoperability, securability and business fit. Almost every project planning, design and implementation best practice has to be re-thought and re-tooled to address changed competencies, marketplace maneuvers and value propositions.

Complexity under the component integration model is no longer manageable by traditional approaches. Cycle times of technology undermine traditional research and validation approaches. Moreover, many enterprises find that they must operate in a mix of the old and new paradigms (in both technical infrastructure and application levels) which further complicates things. The rate of change is dictated by a marketplace still discovering itself, and cycle times of a few weeks. The key problem is not that organizations haven’t noticed this shift – it’s that the new IT space is no longer manageable without improved methods and tools for addressing complexity, including new design processes, new implementation methods, and new metrics that measure the abilities needed to succeed.

IT Projects Are Failing 54% of the Time (72% in Government) - Thrashing

Thrashing is the state of reacting to project issues in a way that creates more issues and doesn’t solve the existing issues. In this project pattern all project resources eventually become consumed with issues.

[image: image1.jpg]

Steve McConnell addresses thrashing very succinctly in the figure
 above from “Software Project Survival Guide” -- as the project environment becomes increasingly complicated, thrashing and process both increase, gradually eliminating productivity. This same phenomenon plagues most IT decision-making processes to the point that decision makers eventually are forced to “just make a decision.” One common practice we have experienced is the customer that simply buys the most expensive option to avoid lost time wasting on thrashing. While this has worked in the past, is increasingly less successful: 1) vendors who learn of the practice are motivated to overprice their offering, 2) shrinking IT budgets or closer IT expenditure scrutiny eliminate this option.

Projects thrash when good alternatives can not be discerned from the set of all options. It results in wasted time is spent researching solutions and patching failing processes, to buy time to research even more solution options (which are themselves in flux). Thrashing robs a project of productive potential.

Rate Of Change Increases Information Overload

In the past, the most effective CIO weapon to deal with less reliable information was more information. Today we have an explosion of information that’s less axiomatic, where relevant contexts for which the information applies have become fuzzy. The issue is one of visibility. We have the information, but it changes too quickly so we don’t know what to focus on.

Information Overload Obscures Visibility

The increasing rate of change in the IT industry compounds the information overload. We lack methods and tools to filter out irrelevant information and bring to focus the information we need for the specific context we are addressing. The problem has been described as “invisible information”.

Acknowledging this problem, namely, that technology assurance is only meaningful in context of the environment in which the system is deployed and used, is of key importance in deciding the class of solutions that will resolve it.

Which Information Can Be Trusted, Which Can be Ignored?

In the current IT industry model, market researchers collaborate with vendors, integrators and end users in developing IT component and product development strategies. Project and product case studies are the medium for exploring how well products worked together and for establishing information about how systems of components are used. This model produces a large amount of information that’s difficult to mine, and since it is produced by organizations sometimes perceived to have vested interests, much of it is deemed unusable or untrustworthy by users.

Another aspect of the IT industry model that plays a factor is the process through which vendors provide details of features, functions, interfaces, and 3rd party product interoperability. Vendors know about their products. Typically, vendors spend a great deal on marketing attempting to educate potential customers and integrators about their offerings so that these clients will recognize where the vendor’s products can meet their needs -- leading eventually to product or service sales. This highly generalized activity typically involves advertising, trade-shows, and direct marketing.

There are three key issues with obtaining relevant information to effectively align business needs with viable COTS solution sets:

5) Vendor product managers do not necessarily have direct access to customers’ requirements, or intended environments. They must attempt to educate everyone, expending costly resources, and inevitably diluting their message. This situation is compounded by the reality that every other vendor is simultaneously “educating” the marketplace about their products, creating an information overload.

6) The IT value chain needs to know how a specific vendor product fits with other 3rd party products and how together a solution can be formulated. Often, vendors rely on VARS, integrator distribution channels and Solution Providers to provide the solutions view, adding to the information overload and confusion of “what works” and “what works with what”. Integrators may also play offer some interface connectivity between the products, or offer to develop custom interfaces, which is a strategic mistake but often the only tactical short-term “Band-Aid” solution.

7) The typical next step is to generate ever more powerful marketing media to increase the distinction of their product over and above the mire, with the end result being an hype that ultimately numbs and irritates the customer. The cycle becomes non-productive. The resources spent marketing and educating the customer base are not therefore available for the actual improvement and maintenance of the products themselves.

Standards gaps forces new COTS Assessment approaches

Just as vendors provide specific product profiles, standards organizations provide meta profiles for key technology classes, such as “middleware”. Standards have traditionally been developed for the software development process, and on average take approximately 2-3 years to develop to sufficient maturity and adoption by a critical mass of IT industry. These timeframes are no longer tenable given the rate of change. Standards bodies have not yet addressed the component space; there is limited applicability of current standards efforts to the developers of components. None directly address the specific issues of a component “plug and play” world.

SAO Components add complexity

While the use of known capabilities reduces the risks involved in developing software from scratch, the component paradigm brings with it potential risks of its own.

Component Interoperability risks

These risks follow chiefly from unknowns concerning the interoperability of SOA components and their interfaces. The complexities of describing and reasoning about computer program logic have, in effect, been replaced by the complexities of component interoperability. These risks follow from unknowns concerning the behavior of components in contexts other than the (usually over-simplified) nominal context in which they are assumed to be deployed.

Broken Information Assurance links

In the area of information assurance (IA), the risks comprise all forms of security threat, i.e., disclosure, destruction, modification, and denial of service. For example, if the IA assumptions of component X and component Y are not consistent, then the security of a system in which these two components inter-operate will be unpredictable, even if each component is individually certified to some level of assurance. Some method is therefore required in order to ascertain whether (and when) the IA assumptions of inter-operating components are simultaneously met When the number of components goes from 2 to 2n, and both the component assumptions and the required IA properties are highly time and state dependent, the required reasoning can quickly become complex and error-prone.

Unknown Behavior of Components in New Contexts and Black box Engineering Risks

The situation is further aggravated by the fact that components are black boxes whose internal workings are unknown. This implies that the system architect is at the mercy of the components' providers for information about how the components behave. The architect can supplement this official information with lessons learned by previous users of the components. However, without a systematic means of collecting, vetting, and interpreting such information, the evaluation process is likely to be incomplete and subject to considerable uncertainty.

Two-way Assurance

Methods are needed for ascertaining whether and when the Information Assurance assumptions of inter-operating components are simultaneously met.

No standardized COTS Assessment Metrics

The IT does not have a best practice or formalisms for the generation or use of metrics to measure the applicability of an IT design to the business problem at hand
. Most enterprises deploy IT without examining whether it supports their business direction. The dollar figure for IT investments are $2.2 billion annually, which is mostly made in an ad-hoc manner.

Part of the reason for this is that IT managers don’t know what to measure, or how to measure it if they did know. There is no capability maturity model for IT architecture that directly speaks to the alignment issues found only at the boundaries of the business and IT. The science of architectonics is in its infancy but we have made great progress in understanding the answers organizations must have to provide direction and path correction, what the ingredients of the metrics are, and where and how to look for them.

TRADITIONAL APPROACHES TO COPING

The issues described in the preceding section mean that IT Industry has few real options for vetting IT architectures or measuring how effective a change in technical direction will be. There are several technology research, validation and insertion paths that can be taken to achieving success while synchronizing two fast-moving targets: business requirements and IT Asset space. These approaches fall into one of three primary strategies.

Approach #1: Internal Testing:

Many large organizations support internal pre-production, interoperability, or experimentation testing labs where emerging products and technologies can be installed, tested, evaluated and assessed in a low-risk fashion. This approach for vetting emerging technologies is very time consuming and expensive. These labs are maintained with the anticipated hope that the supporting organization can better keep a leg up on the challenges of the actual integration of emerging tools and technology into their existing IT infrastructure. There are several problems and some bad historical data with this model. First, the lab staff represents a time consuming and costly resource switch, diverting usually the most competent technical staff from their primary activities to do research
. Additionally, how is the ROI for this investment realized, if even calculable? It is a tough sell, especially in light of the deluge of raw material brought on by the Internet economy. Finally, such a lab has a finite ability to address an unending stream of material. Any lab large enough to truly keep abreast of everything would truly be cost prohibitive as an overhead expense.

While some organizations have done admirable jobs with this approach, it is like the runner who stumbles and has to run ever faster to keep his balance until, eventually he cannot run any faster, and falls. If we focus our testing on what is generally not known, and can leverage what has already been tested in our community of interest, this approach can work. However, those individuals who benefit from these labs are often unwilling to usher in change or acknowledge the futility of their efforts.

Approach #2: Outsourced Testing and Research:

“If you want to know what’s available, just post an RFI and let the vendors do the research for us” is a common approach taken by the end user community. This usually backfires as the marketplace recognizes the potential future contract and presents large quantities of information accordingly.

This approach is clearly effective in gathering information, but is also impractical. This model gathers only a very large snap shot of the marketplace’s best marketing propaganda. This information still must be systematically read, analyzed, assessed, and evaluated – a process that, by the time it has been completed, is so dated as to be virtually useless.

This “clever” approach is a variation on the massive “beta” program or “Open Source” initiative where the burden of testing and debugging is passed on to the consumer. Unfortunately, the quality of the end product can only be as good as the contributed effort. With RFIs, one experiences high-quality marketeering, supported only by a minimum of technical expertise.

Based on recent failing of those organizations who have operated these testing labs, we now know futility of their efforts when not coordinated. Though more efficient than internal testing labs, the rate of change has made their efforts even more vulnerable. Organizations like the Corporation for Open Systems and other branding efforts have been hard to justify to corporate IT. We cannot test for all the possible factors and must leverage current knowledge if this market is going to survive.

Approach #3: Solution Architecture Collaboratory:

A virtual collaboratory, which addresses all the issues necessary to the CIO for quality decision-making, is typically cost prohibitive, and the RFI process addresses only snapshot moments in time, and therefore cannot keep current. However, a shared, external lab, or collaboratory, can dynamically address all the key information in a timely fashion. The foundation for this potentiality is simple synergy. By sharing in the information-input process, using a win-win model, everyone involved gains more than they contribute. In this model everyone involved wins.

This evidenced based, sharing process, like any multi-human social activity, requires mutually accepted language and fair rules to preserve harmony and prevent abuse. In today’s high-stakes competitive IT climate, fair play may seem idealistic if not completely elusive.

Nevertheless, isolated examples abound where accords have been reached, with some of the industry’s most open results, such as the case with Linux.

Insufficiencies in these approaches

If these approaches worked the industry would not have experienced the high failure rates in either the software development modality or the newer pure component or hybrid component-software development modalities.

Even if the first two approaches were conducted flawlessly, the first one provides conceptual and limited physical interoperability validation but not in context runtime interoperability. The second approach (outsourced testing and research) if conducted flawlessly would not prove even conceptual interoperability without a fair amount of due diligence.

The last approach (collaborative) is the one that provides the most promise, as it solves all the interoperability problems at the same time. The issue has always been that it would be impossible to develop.

The Synergy of Virtual Assessment Lab
“Government and industry are developing architectures as a means of modeling their enterprises and developing meaningful implementation plans. In addition to executing business strategy, architectures provide the means of communicating business needs to the IT community. This ICH validation method enables the conversion of these architecture blueprints into implementation reality. It allows all participants to make evidence-based in-context technology decisions on IT assets select to address business needs.”
Essential Requirements of the Synergistic Virtual Collaboration Model

As introduced in the Executive Summary, the three key elements for successful enterprise are people, process and technology. The IT industry has focused diligently on understanding its marketplace (people), has ended up with a default process that overwhelms, and despite itself produces technology that works, but at tremendous cost and uncertainty. The research done by the Interoperability Clearinghouse has demonstrated that it’s only when you successfully apply all three of these elements would you succeed. This is because all three elements are mutually dependent.

The components of synergistic Virtual Collaboration address all three elements:

i. People – the win-win model of the collaborative approach to collecting data

ii. Process – the Interoperability Clearinghouse methodology which provides a way of bringing together People and Technology based on a powerful and enabling “strength of evidence” model, which is explained in detail further in this paper.
 The methodology addresses how to deal with a problem where success requires you to “prove a negative” (which can’t be done). The testing laboratory approach shows when bad products will fail. This shuts down collaboration because the vendors don’t want their products tested that way. The “strength of evidence” model take the reverse approach bases on measuring positives.

iii. Technology - the approach taken for dealing with complexity is based on automated reasoning.

The IT Virtual Collaboratory proving ground

This synergistic “virtual collaboratory” model for coping was demonstrated to provide the most promise and the greatest potential short and long-term ROI by matching the pace of IT change, handling complexity and generating metrics that worked for planners and designers.

Using some of these principles as a working hypothesis, most forward-thinking IT players came together in 1995 to link the IT supply chain under a non-profit umbrella called the “Interoperability Clearinghouse” (ICH).

Based on commercial Best Practices found in Boeing, EDS, Ernst & Young, MITRE, GM, Citigroup, DoD, and other market leaders, S.A.I.L. has collectively established an architecture driven IT Architecture Modeling/Asset Configuration and Management Tool to manipulate internal and/or external specification knowledge bases that effectively addresses the fast paced market, and to provide in-context research results to all collaborators in the IT value chain.

The ICHnet.org Alternative
The mission the Interoperability Clearinghouse is to offer a suite of research and validation services that provides primary stakeholder in the IT supply chain (users, ISVs, integrators, standards bodies) a way to articulate their critical contribution to the IT Value Chain. In order to accomplish this, ICH’s collaborative offerings needs to package the fundamental technology and concepts described in the preceding sections in a way that assesses, synchronizes and publishes the independent efforts of the virtual collaboratory. Specifically, the product set must achieve the following goals

· The collaboratory must embed the methodology and address the motivations and key success factors driving each of the participants in the value chain. All must see the value in participating in a high integrity, conflict free environment. Success depends on the buyer of commercial solution being the primary beneficiary of this high integrity information exchange.
· The method and tools must be designed and packaged in a way that flexibly addresses all key existing and new capabilities that are the determinants of success, such as interoperability, securability, extensibility, scalability among others.

· These methods must expose best practices and lessons learned so as to reduce the dependency on expensive and time consuming green fields testing. Testing takes too long, and often exceed the cycle times of most technologies.

· Government and industry must have input in these process and validate the approach much like SEI evolved CMMi.

· The organizational structure must be open, inclusive and free of inherent organizational conflicts of interests. That is, the managing entity should not participate directly in the development of IT Standards, Products, and/or Integration Services, so as to remain 100% objective.

KEY BREAKTHROUGHS

Discovering the keys to a successful approach to this problem provided only part of the answer. A number of technical challenges presented themselves all of which had to be solved, prototyped and tested. Developing a metric that would be a way of universally assessing the validity of claimed functionality was a key challenge. The only reasonable solution would be one based on “third party” evidence i.e. not based on claims by any party with a vested economic interest in the quality of the claim. The answer lay in the collaboration itself. When the metric was identified, it pointed the way to what was a necessary process for the repository and the inference engine. Each of those presented further technical challenges.

Details on each Technical Breakthrough can be found in the Appendix of this document.

First Technical Breakthrough

A New Quantitative Metric: Strength of Evidence
The first challenge in addressing the problems that S.A.I.L. set out to solve was that of how to measure assurance of interoperability within and between components, systems, environments and the interfaces among these entities and identifying the dimensions of “assurance”. The resulting metrics we have developed and proven in the prototype and case studies are based on an assessment of the “Strength of Evidence” that any given interface actually functions correctly based on the following factors (minimally):

1. Vendor claim

2. Reciprocal vendor claim

3. Functional Testing

4. Standards Testing

5. Integration Testing

6. History of 3rd Party implementation successes
These factors are combined cumulatively along an asymptotic curve to arrive at a “Strength of Evidence” value between zero and 85%. Our empirical experience indicates that when using multi-contextual data to address specific instances, there can be no reasonable assurance greater than 85%. The following figure represents this asymptotic valuation.

[image: image2.wmf]

V

endor

claims

Functional

testing

Implem

entation success

histories

85%

50%

25%

72%

“Strength of Evidence”

for this interface

Best Practices

Strength of Evidence provides a comparative meta-metric which can immediately reveal interfaces which are troublesome, untested, unproven, or just new and therefore potentially risky. Interfaces with higher strengths represent those that have been successfully implemented elsewhere and are therefore;

a. More likely to be successfully implemented in additional contexts

b. Have 3rd party case data available from which new implementers may be able to can wisdom, and therefore avoid repeating mistakes of earlier implementers

c. Are in use in sufficient mass such that the vendors involved have increased perspective and therefore can provide better technical assistance and such that additional utilities and other helpful data is likely to have evolved to support this interface.

d. Represent less risk, and therefore, collectively increase the overall architecture’s likelihood of success.

The strength of evidence measure provides a determinant of a metric that measure the overall risk inherent in an IT architecture.

S.A.I.L. Risk Metrics

A risk metric is an output of a model that represents the interactions between information and rules describing predictable desired and undesired behavior within a problem space. The behavior is usually characterized as an “-ility”. For example, in the IT Asset component problem space, interoperability is a desired characteristic or behavior. Given a specific set of IT Assets, SAIL’s data collection process seeks to predict where, when, why and how features/functions/services are validated via past performance data (testing, implementation).

Environment Context

A popular analogy for risk management is to visualize potential failures as randomly located large holes in playing cards. When some of the cards are stacked into a deck, they represent a context and specific components. If the holes line up with each other so you can see right through the deck, you have a very high risk metric. In other cases, where only one of a few of the set of components fail (only a few holes lines up), the risk metric would be lower for that group of IT components for that context.

Further reading: Much more detail on this S.A.I.L. Risk Metrics is provided in the appendix to this white paper.

Second Technical Breakthrough

Collaborative Knowledge Base Population

Finding a way to incentivize all participants in the IT value chain to voluntarily feed a fact base is a significant social engineering challenge. Most of the people in this space are challenged and burdened by struggling with the current process it would take a process with immediate and measurable payback to encourage a shift to the collaboratory model.

The S.A.I.L. methodology was evolved by the Interoperability Clearinghouse from several key industry architecture standards efforts, incorporating best practices from 110 of the most progressive IT organizations in the world. The primary forums where this effort evolved were the International Standards Organizations working groups namely;

Object Management Group (under the Object Management Architecture efforts),

IEEE Architecture Standard (IEEE 1471),

OSI Reference Model for Open Distributed Processing (RM-ODP),

ICH Value Chain and Component-Based Architecture Methods

The Telecommunications Information Network Architecture Consortium (TINA-C)

The US Federal Government, Federal Enterprise Architecture Reference Models (www.FEAPMO.gov)
The US Department of Defense, C4ISR and GIG architecture efforts.

The Advance Research Program Agency (DARPA), Information Systems Office Distributed Component- based Architecture Modeling Project (DCAM).

Some of the 110 organizations that played a role in the evolution of the ICH Architecture Validation methodology including: Office of the Secretary of Defense DCIO, Lockheed Martin, SAIC, Ernst & Young, Citicorp, Merrill Lynch, MITRE Corporation, Aerospace Corporation, Computer Sciences Corporation, GSA, DARPA, US Navy, Department of Justice, OSD Health Affairs, Discovery Communications, General Motors, IBM, NASD, EDS, Department of Commerce, Boeing, Unisys, AT&T and The OBJECTive Technology Group.

Common Architecture Language: Common Criteria

A key part of this challenge was the representation of environmental context, components, interfaces and interactions in terms of its impact interoperability in an actionable automate-able form. For example, a technology area such as middleware needs common criteria defined and weights assigned to individual criteria. A collaborative lexicon and taxonomy process therefore necessarily evolved as an important aspect of the overall collaborative data gathering methodology.

Further reading: Much more detail on this breakthrough is provided in the appendix to this white paper.

Third Technical Breakthrough

Dealing with the Complexity Challenge Using Inference Engines

The third challenge address the fact that a massive proliferation of heterogeneous components and interfaces makes informal, human reasoning insufficient for developing the interoperability metrics required to make decisions. This was a principal factor in choosing to apply AI inferencing technology toward the S.A.I.L. solution. The complexity of modern enterprise architectures is simply too mentally overwhelming to resolve the capabilities of the final product without either abstraction or filtering. There’s just too many factors to consider at once if one is to evaluate the secondary and tertiary ripple effects of any contact with the architecture. What the person needs is a “contrast” knob, to clarify the picture so that interfaces with lower strength of evidence, and the otherwise non-obvious potential impact of those interfaces will sharpen into view. BlueProphet, as a result of three key merging technologies or collaboration methodologies, was designed to provide this clarity.

Most architectures and technology decisions are vetted and validated within technology, engineering and business groups. These groups provide a collaborative model with formalisms and tools from the old paradigm of software development. S.A.I.L. gives these groups the formalisms and tools for the new paradigm.

Architecting with Components and Interfaces

· Components and Interfaces

The typical component model consists of system components and their associated functional interfaces only. Such a model cannot be used for measuring assurance, as the key interfaces necessary for such an analysis are missing from the model.

· Typical Component Perspective

The typical component model consists of system components and their associated functional interfaces only. Such a model cannot be used for measuring assurance, as the key interfaces necessary for such an analysis are missing from the model.

· Hidden Interfaces Factors Beyond “Functional Interfaces”
	· Assurance

· Risk

· Survivability

· Robustness/Constitution

· Connectivity
	· Breadth of services

· Performance (run time)

· Ease of use

· Openness and standards compliance (international, de facto, domain)
	· Flexibility

· Portability, both GUI and application logic

· Integration and connectivity

Other technical issues and risks associated with adopting components may be analyzed, including interoperability with other components/methodologies, technology aging, training cost and time, and development environments. In addition to technical considerations, an extensive trade study is often necessary to determine products’ market stability, strategic alliances, financial standing, customer base, strength of offering, and the future direction of the technology.

Additionally, operations and maintenance costs of code represent approximately 75% of all life cycle cost, where development tools typically comprise less than 5% of the typical project cost (20% in other computer related products). Long-term assurance metrics may address these larger cost issues at some level.

· Complexity abstraction

Thus, by abstracting the total complexity of a component-based architecture into components and interfaces, as long as the interfaces modeled include significantly more than just functional interfaces, one can create a fact-based representation of a system upon which targeted production-rule reasoning can be applied to identify non-obvious issues that a human would not be likely to “see” without such automated assistance.

Further reading: Specific detail on the risks, advantages and comparative approaches used by S.A.I.L. ’s inferencing engine is provided in the appendix to this white paper.

S.A.I.L. Use Cases

The following use cases represent thinking about the kinds of users who would find immediate and obviously beneficial utility in using the S.A.I.L. approach.

Procurement Official
A specification writer requires all submitters to provide us S.A.I.L. models:

Can validate the solutions

Can compare the solutions

Can identify the weakness in solutions

Can request specific additional supporting information about low Strength of Evidence elements to evaluate probability/risk.

Solution Architect
A Solution Architect uses S.A.I.L. to research solutions

Allows a proposer to better prove his case

Allows a proposer to better differentiate his solution

Allows the best solution to win, based on technical merit vs. marketing skill

Project Managers (Enterprise Builder, Owner/Manager)

Project Managers use S.A.I.L. to assess and validate architectures.

Can model existing architectures and save them as baselines

Can study baselines to better understand and trouble shoot

Extend baseline with what-if analyses

Preview changes, patches, upgrades etc., to see what (non-obvious) impacts can be expected.

CIO’s, CTO’s

CIO’s and upper management use the results of S.A.I.L. to assess risk in their IT Portfolios and to measure the suitability of proposals to business direction.

Can justify plans, purchases, framework concepts to the budget process

Can hold vendors better accountable for their claims

Can measure performance of project managers and architects

Can better prove their IT Portfolio matches strategic business direction

Table mapping IT Stakeholder to typical S.A.I.L. Use Case

	IT Stakeholder /
Function
	Enterprise
	Vendor
	Integrator
	Market Analyst

	Planner
	Use Case #1
	Use Case #1, #2
	Use Case #2
	

	Owner
	
	
	
	

	Designer
	
	
	
	

	Builder
	Use Case #3
	Use Case #3
	Use Case #3
	Use Case #3

	Implementer
	Use Case #3
	Use Case #3
	Use Case #3
	Use Case #3

	Coder and Configurator
	Use Case #3
	Use Case #3
	Use Case #3
	Use Case #3

	Maintainer
	Use Case #3
	Use Case #3
	Use Case #3
	Use Case #3

	End User
	
	
	
	

Conclusion

There is a need to reason about the viability and interoperability of COTS solutions at the feature interaction level in order to facilitate Information Assurance software integration. The S.A.I.L. tool in conjunction with the Virtual Collaboratory provides the industry the ability to reason in real time about the interoperability of all components. Other IT architecture capabilities need to be modeled and measured, and a tool that offers the generic ability to reason in an automated fashion about interoperability, can be tuned to perform the same functions for other requirements.

A S.A.I.L. repository in conjunction with an consortium of solution providers provides a conflict free zone for disseminating or collecting in short timeframes the information required to generate trustable interoperability statements. The Architecture Validation Method provides the means for all stakeholders to become win-win participants of the collaboratory. This tool, technology and method becomes the first player in a new class of eagerly awaited IT Asset Management tools and approaches.

Contact Information

ICHnet.org can be reached at:

904 Clifton Drive, Suite 200

Alexandria, VA 22308

(703) 768-4975 (voice) - (703) 765-9295 (fax)

email: info@ICHnet.org - web: www.ICHnet.org/sail.htm
APPENDIX

This appendix provides specific detailed depth in support of the actual white paper. By limiting the level of detail in the paper itself, the authors hoped to keep it readable and concise. However, the authors also realize that certain readers would desire more in depth technical support for particular elements of the paper. This depth is provided in the following pages of this appendix.

Breakthrough Number 1 (More Reading)
S.A.I.L. Risk Metrics

As already stated in the white paper (and reprinted here for sake of clarity), a risk metric is an output of a model that represents the interactions between information and rules describing predictable desired and undesired behavior within a problem space. The behavior is usually characterized as a capability, which we sometimes abbreviate as “-ility”. For example, in the IT Asset component problem space, interoperability is a desired characteristic or behavior. Given a specific set of IT Assets can we predict where, when, why and how interoperability will occur and when it will not?

Environment Context

The problem environment is a complex context within which behaviors being examined take place. Adequate description of the context is important to accurate measure predictability. For example, a system comprised of a group IT components operating when the context in a given state could fail interoperability when it never failed for all other states. This is generally the case when the failures of each component align with each other (a popular analogy is to visualize the failures like large holes in cards lining up with each other so you can see right through). In this case where all the holes lined up, the risk metric would be computed as very high for this context and this particular group of components. In other cases, where only one of a few of the set of components fail (only a few holes lines up), the risk metric would be lower for that group of IT components for that context.

Interoperability Risk Example

In the case of interoperability, the strength of evidence (SOE) metric calibrated for contexts (as specified by e.g., use case – context grids) would provide a determinant of the Interoperability Risk Metric. The accompanying factor would be the computation of the probability of the “catastrophic” scenario (all components fail interoperability) based on the probability of the business being in the states or contexts in which those failures are predicted to occur.

Prediction of Interoperability (context) = Strength of Evidence (context) * Probability factor (context)

Interoperability Risk (system) = Prediction of Interoperability (all contexts)

Models for Other IT architecture capabilities

Securability is a critical characteristic of IT Assets. Factors that determine the strength of evidence determinant for securability are assessed differently than for interoperability. Other characteristics of IT Portfolios that can be measured in this way, using SOE grids designed for the “-ility” being analyzed.

Models for the Business itself

Components in IT Portfolios were selected to solve business problems at a given point in an organizations timeline. At any specific time, there would have been an optimal portfolio for a business problem for the most likely contexts. Industry specific comparative grids based on collaborative data would provide a basis for identifying optimal portfolios for addressing business problems. The S.A.I.L. model can be applied to measure IT Portfolios for suitability to the business and the pattern of problems it attempts to solve.

Business Requirements Patterns

Much of technical architecture and its accompanying IT failure issues are common across industries. It is at the application layer that portfolios differ and componentization is more difficult to achieve. This is partly due to the lack of or ad hoc nature of the application interfaces and the reliance on custom coding, among other reasons.

The types of problems that the technical layer solves are technical and have been extensively described in terms of “patterns”. Similarly businesses in general have to solve a number of common business problems which have predictable profiles. The requirements for a specific problem will follow a predictable pattern and can be specified for the most likely contexts. The IT architecture profiles of the most successful companies can be used as a benchmark against these common requirement patterns, generating a requirements pattern grid which is used as part of the set of determinants to measure the risk of business suitability of an IT portfolio.

Context Grids

Contexts are described by selecting attributes in an environment that change the behavior of the business or systems “-ility”. For example, systems that use data driven components may be exercised in an unforeseen way if the plug-and-play data component was corrupted. Stock exchange volumes going over an unprecedented size was a data factor that crippled many businesses until the components that couldn’t handle this specific context were upgraded. Contexts are best described by use cases and use-case context grids determine which SOE grid should be used in the S.A.I.L. engine.

Use of the Risk Metrics

The Risk Metrics are used to measure the risk characteristics of IT Assets. Managers can assess whether their Portfolios that measure low risk for suitability to the business problem, for interoperability, scalability, securability and adaptability. The S.A.I.L. tool can be used to offer better solutions to the business problem by:

· Suggesting alternative components that score higher

· Presenting successful system architectures for the requirement

Operational Risk

All businesses are subject to risk. As businesses automate their processes, risks in their processes shift from human to system risks, and to risks at the human-system interface. The S.A.I.L. inference engine can be used to measure the kinds of risks identified as important to track for any business. Currently a collaborative model is used within industries to assess benchmarks for capital planning around Operational Risk. The most devastating operational risks are those that have a long time lag (across accounting cycles) before being discovered. The role of a tool such as S.A.I.L. in helping predict failures and assign measures to the prediction is becoming increasingly visible across industries. That the S.A.I.L. tool is based on a Collaboratory model fits with the pattern adopted across industry to solve this problem. The tool can be used to automated and expedite data collection and provide inference based predictions in less time than the usual 5-10 years required for standard statistical practices. As the pace of technology and complexity increases the profile of data the industry will want to collect and the operating risk profiles it will attempt to measure will change rapidly, making a 5 year repository of collected data fairly obsolete in any case. Thus, a strong case can be made for inferencing from sparse data as the only tool to measure operational risk. S.A.I.L. has the model and a generic, proven engine in this space.

Breakthrough Number 2 (More Reading)
Collaborative Knowledge Base Population

A chief accomplishment of the Component Inferencing model is the resulting logic of component interoperability derived from sparse data on features and interfaces. The ability to dynamically assess strength of assurance, in a shifting context, such that one can readily identify, and quantitatively measure otherwise non-obvious risks is no small accomplishment.

Another key challenge posed by similar systems is that of obtaining, and maintaining up-to-date facts for the inferencing engine. For this model, a parallel non-technical success model has been successfully instituted that continually attracts new facts into the model. This is accomplished by building in to the human management process associated with the model a set of win-win motivations for key data owners to participate and maintain the accuracy and completeness of facts. These key data owners and providers are the standards organizations, vendors, testing organizations and integrators. Our experience has shown these owners and providers prefer to participate under this new brokerage process and are incentivized to generate trustable data as follows:

· Standards organizations

Standards bodies survival depends on the utilization of the standard that they present. Typically, utilization of a standard can save an implementer from many of the pitfalls that the standards originators have already experienced and dealt with. This kind of pitfall prevention, as well as a desire to minimize brittle stove-pipe trends provide justification for users and implementers to financially support such bodies.

By participating, standards bodies can gain exposure to more potential supporters as well as gain collaborative support for improving their actual standards.

· Vendors

Since “the best technical” product frequently looses to the “best marketed” product; this approach receives consistent positive reinforcement. The buyer, through unwillingness to award based on technical merit, has essentially told the market that it wants more marketing. In contrast to normal operations, vendors who participate in this model have the opportunity to provide exactly the facts necessary to potential users of their products in the identification, evaluation and selection of their products. As the model gains in use, the motivation by vendors to keep facts concerning their products up to date increases proportionally, while the utility and effectiveness of inundating with wasteful marketing hype decreases proportionally.

· Testing Organizations

Testing data uncovers non-obvious capabilities and limitations. Monolithic testing organizations have appeared on the scene at various times claiming to be “the” source for validation or conformance testing. We have learned from the repeated failures of these attempts that they are not sustainable. For example, the Corporation for Open Systems (COS) tried and failed to become the central test and validation point for pieces of the networking layers. They failed because they could not keep up the demand or rate of change while also sustaining viability in the marketplace. The same is true for the US National Institute of Technology (NIST) FIPS program, which provided government funds for testing standards and interoperability.

Non-monolithic testing labs are a different breed, however. These organizations focus on fulfilling a legitimate, marketable need in the marketplace for quality, certified testing. Where the monolithic organizations have failed, these focussed, contracted testing companies can and do thrive in a marketplace so fraught with risk of failure

· Integrators

Operational run-time configurations confirm expected results. The Integrator is typically closer to the user problem. This is because most integrators have developed expertise in both technology and industry domains. When making enterprise decisions, it is important to map out both the technology direction and problem domain. This requires experience in both of these areas – the experience typified by the integrator. The pressure to find very relevant integrator experience has created an entire new market of consultancy boutiques that are very specialized. Given the relevant success rate of these new boutiques, many large consultancies have organized into several small divisions which look and feel “boutique-like”.

· Analysts

Syndicated research firms provide traditional research products. This kind of information is typically based on the opinions of consulted experts in specific domains, and can be highly valuable. However, IT decision-makers must use caution as this information is not a substitute for actual implementation data that can be provided by collaboratory consortia such as the Open Application Group (OAG) or the Interoperability Clearinghouse (ICH) which do provide in-context, implementation-based research.

· End Users (The Key Driver Participant)

It is the user’s needs that justify any expenditure on IT, and the user’s money that funds the entire IT food chain. As explained in the Vendor Perspective, it is the user’s response to the marketplace that eventually determines marketplace behavior. If user’s make decisions based on valid technical criteria verses “best marketed” criteria, the marketplace will respond with better technical information and solutions.

In the model, the user provides the motive for all other participants to do their part. It is the user’s searching for and analyzing of products that motivates the vendor to keep that data up-to-date. It is the user’s search for integration information (and assistance) that motivates the integrator to document their integration success data, which in turn provides validation and strength-of-evidence data to support vendor-claimed functionality. It is the likewise, the user who seeks targeted testing information that provides motivation for testing organizations to document their testing results.

INCREMENTAL APPROACH TO EXTENDING THE FEATURE MODEL

(Breakthrough Number 3)

Machine learning

Machine learning and/or multivariate statistical techniques to abstract from empirical data as components are used

Sparse Data

Emphasis on techniques that can learn from sparse data in a dynamic environment

Architectural Methodology Supporting S.A.I.L.
S.A.I.L. is based on the architectural methodologies of the Interoperability Clearinghouse, just as Rational Rose’s UML for writing code is mediated out of the OMG.

The ICH’s methodology is fundamentally drawn from the OSI’s Reference Model for Open Distributed Processing (RM ODP), architectural frameworks such as Zachman’s Enterprise Architecture Framework, adopts the terminology contained in IEEE’s 1471
, inherits the design of OMG’s Model Driven Architecture. It leverages the ICH architecture validation methodology and knowledge base and DARPA’s DCAM project, taking advantage of several primary sources of validation data:

· Standards-developed technology lexicons

· Vendor-provided product specifications (features, interfaces, interdependencies, user success profiles)

· Integration supplied testing and implementation data

· End user supplied success profiles

Definition of Architectonics

The Architecture Validation process takes technical architectures as “Input”, executes it’s functions and “Outputs” assessed architectures. The key mechanism for the process is the S.A.I.L. tool, and the whole process is governed and marshaled by the rules and knowledge of the knowledge base and architectures. The application of such methodology and formalisms to the construction of architectures is described as ‘architectonics’ (see Figure xx).
The technical architecture (implementation blueprints) for any enterprise is typically in a constant state of flux as it continues to grow and adapt as needed to support specific technical needs. Functional and technical requirements are therefore in a state of continual evolution. Accordingly, it is necessary to make a number of assumptions related to the architectural direction in order to proceed with the any on-going enterprise-system programs. These assumptions must also be well documented and clearly understood as valid common criteria for future decision making.

Furthermore, assumptions made must be based, in part, upon a review of related architectural efforts to date. This usually requires at least an informal, targeted architectural baseline effort. Nevertheless, typical assumptions are:

· To successfully implement distributed component architectures, one must be able to construct detailed architecture blueprints that enable the mapping of business requirements to viable and interoperable solution suites. OSI’s Reference Model for Open Distributed Processing is a good starting point, but lacks means of vetting an implementation view.

· The ability to implement open, secure, heterogeneous environments in future systems development efforts requires a common information infrastructure based on standard interfaces

· Traditional monolithic architecture methods (POSIX, TAFIM, FRAME) do not enable the refinement of implementation "blueprints" -- the systems engineering plans for enterprise architectures. Architectonics methods must be applied that account for this new computing reality (i.e., OSI RM-ODP, IEEE 1471, OMG MDA)

· Use of COTS products and component technology will be maximized to improve time to deliver and reduce cost. It is far less risky to buy than to build if both equally meet the business needs. However, most product marketing literature lacks the specification data needed for making source selections.

· Information Assurance is not a feature, it must be part of the overall system design and technology selection process

These assumptions are obvious to most fortune 500 IT shops; yet many of these principles are overlooked. Based on feedback from nearly all quadrants of industry, an alternative approach to architecture validation must accommodate the need for greater detail including interface definitions and interdependencies between products (product combinitorics) if one is to adequately manage their IT portfolio.

It should be obvious that architecture validation and research services should come from organizations free of biased interests in specific standards, COTS products, or implementation services. And given the complexity and breadth of the market, these services have been destined to originate from a network of knowledge experts, such as the collaboratory.

The Role of Standards in the Methodology

When working with standards it is also critical to be adept at navigating the layered and complimentary nature of related standards. Thus, one who would propose new standards, or changes to existing standards, must carefully avoid the synchronization challenges that can result from redundancy across related standards and the confusion potential of conflicting or contradictory standards.

Standards go a long way toward interoperability, but as many who have tried to “buy CORBA” have learned, you can't just buy a standard off the shelf -- you can only buy products, which may implement (or partially implement) standards. Thus, to get the most out of standards, you really need a host of other implementation data as well - such as:

· Which standards relate to my context in a helpful way?

· Which products implement those standards?

· How complete/accurate are the implementations of those products?

The methodology is structured to use standards effectively by combining standards expertise with real-world, 3rd-party implementation data to drive product selection and integration. The diagram below gives a fair picture of the other factors, in addition to standards, that are key to the methodology.

[image: image3.emf]Common

Business

Models

Solution Exist?

Down select

Solution

Alternatives

Model New

Solution

Solution Architecture Validation

and Demonstrations

Yes

no

MDA

Service

Components

Phase 1:

SOA

Validation

Phase 3:

Analysis of

Alternatives

Phase 2:

Best Practices

Alignment

Agency PMs

Business

Requirements,

Policy, &

Guidance

Integration

Lesson Learned

Certified

Solution

Architectures

Best

Practices

Lessons

Learned

Value

Chain

Analysis

Solution

Patterns

Normalized

Solution

Frameworks

MDA

Service

Components

Solutions

Knowledge Base

Integrators

Consultants

AoA

Complete?

Yes no

Solution Component

Common Criteria

Business Patterns

Validated Business

Cases & Solution

Acquisition Models;

Testing Data and Evidence

Industry Best Practices

Business Ref Models

Users

Vendors

Inputs and Outputs of the ICH Architecture Assurance Process
Understanding standards and their organization is key to identifying proper foundational and related standards. The first thing to understand is that standards can be organized in various ways. One useful standards taxonomy is based upon the various bodies and standards concerns. Some of these more prominent bodies include the following:

	· ANSI (American National Standards Institute)

· COS (Corporation for Open Systems International)

· DOD-STD (Department of Defense Standards)

· Open Applications Group (OAG)

· Open GIS Consortium

· MIL-STD (Military Standard)

· ECMA (European Computer Manufactures Association)

· FED-STD (Federal Standards)

· FIPS (Federal Information Processing Standards)

· IEEE (Institute of Electrical and Electronic Engineers) ISO (International Organization for Standards)

· ITU(CCITT)International Telecommunications Union
	· MISCELLANEOUS (TR, SR-RG, NMF,IHO,COSE Motif)

· NIST (National Institute of Standards and Technology)

· OMG (Object Management Group)

· The Open Group (TOG)

· OSI (Open Systems International)

· STANAG (Standardization Agreement (NATO))

· TINA-C (Telecommunications Information Network Architecture Consortium.)

· TSGCE (PG/6) Tri-Service Group on Comm.and Elec.

· Open Buying on the Internet (OBI)

· NIAP (National Information Assurance Partnership)

These organizations allegedly drive technology. However, while these bodies do help define high level models, they do not typically market products. Moreover, since one cannot “buy” standards (as an off-the-shelf software product), and since compliance is nebulous or impossible to link to real world needs (scalability, usability, interoperability), the CIO cannot depend on standards alone.

The collaboratory leverages its membership base's vast intuitive experience and in-depth participation in other standards efforts and with other standards concerns to get the most out of standards. The methodology maximizes the identification, support and use of applicable existing or emerging standards, and to minimize the potential for conflicting or contrary guidance, and to maximize the benefits to be gained by leveraging them.

Obtaining Valid Data

Regardless of how architecture and technology research and validation efforts are sourced, you need valid data and an accurate requirements context in which to apply this knowledge to make sound IT decisions. Success today is multifaceted; it requires an understanding of your business (operational architecture view), the implied technical requirements (systems architecture view), your technical constraints and standards (technical architecture view), and eventually, your implementation blueprints (implementation architecture view). Without these views, success is not assurable, and rarely repeatable.

IT Supply Chain Information Sources

To distil useful technical data from the deluge marketing literature and to minimize the time it takes to gather that data, it helps to understand the original information sources of the literature and their motivations. If we are to cope, we must engage the “owners” of these architectural artifacts and work in a singular context, or lexicon. So, lets look at what data we need, and how we can bring it all together.

Upon examination of the collaboratory model from the perspectives of the participant stakeholders necessary to realize it, we have critical need of certain kinds of up-to-date, unbiased, and accurate information. Some of these data types and typical sources are:

· Architecture Nomenclature: IEEE 1471, clearinghouse collaboratories, ISO RM-ODP, OMG OMA,

· Technology & E-Solution Set Specifications: IT Standards, De Facto, Du Jour, International, etc.

· Product Specifications: Independent Software Vendors, Integrators

· Standards Conformance Data: Testing organizations.

· Interoperability Data: Implementers, integrators and users

· Product Usability Data: User organizations, IDG, CMP Media, NSTL, JITC

Other Important Evaluation Considerations

An important consideration of a methodology-driven evaluation effort is to ensure assessed products not only make maximum use of existing investments and capabilities, but also allow for a smooth transition toward a targeted architecture. This glide path should account for evolving standards in the contextual domain for both “in use” and “preferred” components, products, tools, and methods.

Development environments are frequently viewed in terms of several broad objective requirements are:

· Breadth of services

· Performance (run time)

· Ease of use

· Openness and compliance to standards (international, de facto, domain)

· Flexibility

· Portability, both GUI and application logic

· Integration and connectivity

Other technical issues and risks associated with adopting tools also must be analyzed, including tool interoperability with other tools/methodologies, technology aging, training cost and time, and things like development environments. In addition to technical considerations, an extensive trade study is often necessary to determine products’ market stability, strategic alliances, financial standing, customer base, strength of offering, and the future direction of the technology.

Additionally, operations and maintenance costs of code represent approximately 75% of all life cycle cost, where development tools typically comprise less than 5% of the typical project cost (20% in other computer related products). ROI assessments must address the larger cost issues.

The Result: Up-to-date, Context-based Assessments

The result of a methodology-driven effort is a set of detailed assessments of IT products not eliminated through the process (because they were not viable or not appropriate, based on context-weighted criteria matrixed across the entire spectrum of potential domain offerings). These assessments present the results of extensive collaboratory knowledge, technical literature reviews, COTS market surveys, and product research based on a weighted evaluation criteria developed within the user’s real context.

Architectural Validation Process

The methodology is implemented in a process that follows an orderly sequence of activities as depicted below:

[image: image4.png]Model Business
Requirements

OSIRM ODP, IEEE 1471

41T Standards

ICH Best Practices DB

Model Technical
Requirements

evelop
Selection Criteria

Tdentily
Potential COTS

‘Technical Architectural Baselines

Technology Lexicons
Architectural Requirements

Market Opinions: Metz, Gartner, IDG-
ICH Marketecture Research, Vendor Claims

Data Sources

- Vendors - Integrators
-Users -8DOs
- Analyst

Perform Data
Compilation

4.55es5 Products Validate TIap Froviderto
Sclution Options Product Suites

Methodology Process Steps

As this figure illustrates, the methodology defines the process for selecting the optimal mix of IT resources (standards, products, and implementation services) using pre-defined evaluation criteria. These criteria facilitate collaboration among competitive participants by providing specific, fair, expanding metrics against which all tools and COTS products can be uniformly compared in an unbiased, business-driven environment.

During any validation process, an initial solution set is derived from a joint, self-updating, knowledge base of products, reviews of available literature, and market surveys of industry sources specializing in the identification of technologies for various applications/purposes. The extensive nature of an initial products listing necessitates a high level filtering to narrow the list of viable offerings down to only those that meet the critical common criteria. The "mix" of viable standards, software components, COTS, and implementation resources are defined in terms past success in similar domains, from which the CIO or IT decision-maker can begin to make informed decisions.

Key Architecture Validation Issues

Common Criteria Lexicon

Government and industry are developing architectures as a means of modeling their enterprises and developing meaningful implementation plans. Architectures provide the means of communicating business needs to the IT community. The ICH validation methods enables the conversion of these architecture blueprints into implementation reality. It allows us to make in-context technology decisions based on our business needs vs. who has the best marketing hype. (This topic will be examined more closely in the Architecture Methodology section).

Taxonomy

Many past attempts at mapping or standardizing IT taxonomies and lexicons have failed. One major reason why this is the case is because the language of IT continues to expand rapidly and unpredictably. This is another area that the methodology addresses very effectively by using a set of “living” common criteria categorized by technology domain. Thus, the common architecture taxonomy necessary to use and assimilate the information in the clearinghouse repository grows readily with the data repository.

Standards Specification

For standards to be successful, they must be widely accepted and implemented. Enterprises will invest in standards that will lower the risks associated with adopting a particular technology direction as supported variously by a set of vendors. A key criteria for product and vendor selection when provisioning their technology blueprints are the technology standards each vendor claims to support. Enterprises will tolerate a reasonable, logical modifications to the original standard specification. However, when unreasonable changes are made to the standard, it is no longer perceived to be of any use, and adherent to it actually introduces instabilities to the technology blueprints reliant on these standards. Eventually, the vendor, the standards body and the users – fail at their mutual objectives.

Each of these is discussed in more detail below.

Common Criteria (Collaborative Lexicon and Taxonomy Evolution)

The common criteria used in the ICH validation methodology represent both the implicit and explicit development needs of multiple projects collected and refined over time. The initial criteria were based upon an evolution of the generic taxonomies now in widespread use. For example, IEEE 1471 and ISO RM-ODP (reference model for open distributed processing) both establish a taxonomy for information technology standards that applies generically across all domains. Similarly, the National Institute of Standards and Technology (NIST) has established the Application Portability Profile (APP) which is a cross-domain assemblage and categorization of technology standards.

These initial criteria evolve constantly in the collaboratory to keep abreast of new capabilities or features as they become common factors of a technology domain. The net criteria are representative of the needs of the development community, and can be selected according to an individual situation's needs.

The Impact of Common Criteria on Interoperability

Technical solutions are most usefully modeled and managed in terms of product technology categories that describe discrete features, functions and interfaces in an vendor neutral, unambiguous manner, and establishing common criteria that maps business needs to these solution sets. Obvious examples of categories include databases, firewalls, and operating systems. More recent category examples include distributed object transaction middleware, public key infrastructures, and portals.

Typical common criteria sets that have been developed and are maintained by the collaboratory include:

· Web Development Environments

· B2B Applications

· Application Integration Enablement (EAI)

· Middleware (web application servers, messaging, P2P, RPC, CORBA, EJB, ….)

· Portal Technologies and Data Warehousing

· Data Integration (EDI/XML, XMI)

· Data Management (SQL, ODBC, JDBC, Persistence Management)

· Enterprise Directories and Systems Management

· Information Assurance (X509, Digital Signature, Encryption, Firewalls….)

· Networking Technologies (VOIP, Wireless, VPN,….)

Categories are constantly being defined and redefined as the market evolves. The features and functions that define a category are defined by what is currently considered competitive in the market. Standards have an important role in defining new market categories where none existed previously. However, multiple and diverse standards may apply to any given product category.

As categories mature, they tend to merge previous functions into new categories or fade away completely. We certainly see this happening in the area of middleware, where basic object-request-broker functions are being absorbed into the operating system and are increasingly considered an integral part of related technologies, such as Web Application and Distributed Object Transaction Servers.

Using the Common Criteria to Clarify Real Contextual Need

Once identified, individual criteria elements for these domains are assigned a weighting factor representing the level of criticality to the success of the proposed e-architecture in a given specific context. The basic methodology weighting factors are:

· Essential - The product must meet this criterion due to dependencies in architecture requirements

· Important - This criterion is considered very important to the environment.

· Desirable - This criterion is addresses to features that are desirable, or would be useful, but are not a factor in overall success. These desirable factors may carry more weight in future evaluations.

· Undesirable - This criterion addresses features that must either NOT be present of must otherwise have a means to be disabled.

By leveraging the common criteria for a specific category of product, you can be more certain of addressing the complete range of capabilities for any given technology domain. This provides a very useful mechanism for “warding off” high-power marketing pressure of the “we have more features” ilk. When faced with such a tactic, the weighted common criteria provide an anchor point of sensibility based on pre-considered, in-context functionality needs that effectively nullify market hype.

Example Common Criteria Extract

The following example is an extraction from the collaboratory’s common criteria for Relational Databases:

	Evaluation Criteria
	Description
	Weight

	ODBC Driver
	An open data base connection standard that will potentially be incorporated as an international standard in FIPS PUB 127, Level 3.
	Important

	ANSI SQL FIPS127-2 Pre-processor
	SQL standard that is the basis for Oracle and other RDBMS.
	Essential

	OODB ODMG93 Support
	Evolving standard to multi-database support. As the industry merges relational and OO database standards, it will become increasingly important to support these features.
	Desirable

	Record Locking
	Ability to control concurrency at multiple granularities as concurrent data base sessions access data simultaneously in a distributed environment.
	Essential

	…
	
	

Extracted Common Criteria Elements

Maintenance and extension of the common criteria requires the ongoing participation of persons deeply familiar with the taxonomies behind the criteria. Such a person, possessing great intuition borne out of years of experience in specific technology domains, is critical to the correct classification and normalization of such a taxonomy. This is an additional benefit of the collaboratory approach, since participants include many renowned IT thinkers. Moreover, any isolated organization attempting such a feat faces great challenges in gaining the type of voluntary consensus that already exists within an established collaboratory.

The LEXICON Creation Process

The ICH method for creating each technology lexicon assures that the selection criteria established is based on known capabilities in today’s market. Each technology lexicon defines key features, functions and interfaces (including dependencies), in normalized and standards/product neutral terminology. It identifies those attributes that are based on standards, and those that are based on commercially available products. This prevents the development of component selection criteria that are not supported in commercial products (null set). It also enables software vendors and solution providers a mechanism for describing their offerings in a well understood, engineering oriented specification. Vendors are encouraged to “map” these normalized attributes to their own product documentation via an XML template. This also enables product testers, integrators and users an easy way of validating vendor representations and update the ICH e-solutions knowledge base.

A Lexicon is typically developed in concert with technology research organizations and publications who have a deep understanding of a specific technology segment, and are willing to develop these “profiles” in an unbiased format, and in business terms. Each lexicon has an architecture “view” that enables the user to “drill down” into one of the following;

· Technical View: Meta view of technology in business terms

· Standards View: An abstract of the those key features and interfaces that have been implemented in commercial products. The “test” of a standard’s viability in found in the availability of conforming commercial (COTS) products.

· Product View: ISVs are encouraged to “tag” features and functions that are based on a published standard. Validation of vendor supplied profiles is based on identification of existing testing data, integration partners development, and end user implementation successes. The ICH does not dispute vendor claims, but rather identifies only those features and functions that have been validated.

· Solutions View: The ICH captures implementation and testing results as a solution set. Implementation is the ultimate truth theorem. For each solution set, the ICH identifies “who says” in terms of both integrator and end user. The integrator then becomes a validated implementation source for this suite of products.

The ICH maintains these lexicons in cooperation with the source providers by creating XML links with source documentation. This enables comparable analysis of capabilities even though technical terms and feature descriptions may vary. The ICH manages the workflow process to ensure the data is being updated as per the priorities of the IT practitioner membership. The basic theme of the lexicon building and maintaining process is “give a little, get a lot”.

Since major IT buyers are leveraging this self validation process and knowledge base to make enterprise decisions, vendors are highly motivated to participate in this collaborative architecture process, and help support their supply chain partners. Charter members are encouraged to co-establish a dynamically maintained, architecture baseline repository that can be constantly updated as new standards and product data is captured. This will enable trading partners to share architecture specification data and decrease time to market of interoperable solutions.

Breakthrough Number 3 (More Reading)

Dealing With Complexity Using Inference Engines: Origins

During earlier DARPA-funded research, before S.A.I.L. was even conceived, Production Rule Technology as applied to Component-Based System Development (CBSD) was found to be an excellent match.

The IT era of large-scale system development had emerged, in which the emphasis is on building systems by configuring existing components rather than writing extensive amounts of software from scratch. This component-based system development (CBSD) paradigm promised new economies of scale by encapsulating established, frequently required complex capabilities within components that are available off-the-shelf. The paradigm also promised reduced risk through the employment of known capabilities whose performance and functional behavior have been proven in previously deployed systems. Exploration of these promises proved them to be realistic within the context of a complimentary environment which would ensure continual relevance of any knowledge or databases. This revelation led to the formulation of the S.A.I.L. model.

Assurance Risks Introduced by CBSD

While the use of known capabilities reduces the risks involved in developing software from scratch, the CBSD paradigm brings with it potential risks of its own. These risks follow chiefly from unknowns concerning the interoperability of components. The complexities of describing and reasoning about computer program logic have, in effect, been replaced by the complexities of component interoperability. These risks follow from unknowns concerning the behavior of components in contexts other than the (usually over-simplified) nominal context in which they are assumed to be deployed.

For example, if the interoperability assumptions of component X and component Y are not consistent, then confidence in of a system in which these two components inter-operate will be unpredictable, even if each component is individually certified to some level of interoperability. Some method is therefore required in order to ascertain whether (and when) the assumptions of inter-operating components are simultaneously met. When the number of components goes from 2 to N>>2, and both the component assumptions and the required IA properties are highly time and state dependent, the required reasoning can quickly become complex and error-prone.

The situation is further aggravated by the fact that components are “black boxes” whose internal workings are unknown. This implies that the system architect is at the mercy of the components' providers for information about how the components behave. The architect can supplement this official information with lessons learned by previous users of the components. However, without a systematic means of collecting, vetting, and interpreting such information, the evaluation process is likely to be incomplete and subject to considerable uncertainty.

Mitigating the Risks via Automated Reasoning

The problems just discussed cannot be magically waved away, but applying automation on two fronts can significantly mitigate the risks of CBSD:

Reasoning from known information about component inter-operability to confirmed interface properties

Highlighting the areas in which uncertainty remains because of an absence of information about component inter-operability

A corollary of these two functions would be an interactive problem-solving capability, which would suggest alternative configurations that reduce or eliminate the risk areas.

A tool that provided these functions would consist of three main parts:

8) A user interface for specifying systems designs as networks of inter-connected off-the-shelf components, and for specifying the required interface properties of the system

9) A knowledge base containing all available information about components, including vendor specifications, use/experience data, and prior analyses

10) A reasoning engine that would assess whether a proposed configuration meets the specified interoperability criteria, present explanations of its conclusions, and suggest alternatives if the criteria are not met.

Automating these functions would ensure that all available knowledge is applied and that the reasoning is rigorous -- ensuring, in particular, that any imprecision or ambiguities in terminology within vendor specs and/or experience reports are normalized out of the reasoning process. An automated tool would facilitate "what-if" analysis by rapidly re-computing interface properties in response to proposed changes to a design, as well as in response to evolving knowledge about component inter-operability (for example, as new versions of a component appear, or as experience reports expand on the available knowledge). Finally, through the use of an automated reasoning tool, designers would have an audit trail of the rationale for a selected design. This would facilitate the process of re-visiting design decisions (such as the selection of one component over another) in the light of changed circumstances.

Technical Approach: Production Rule Technology

Production rule technology provides a sound basis for implementing a tool that reasons about properties of component-based designs. Production rules are formal objects that map patterns to actions. The patterns typically consist of one or more "fact templates" with a degree of variability. Whenever the current fact base contains a set of facts that matches the pattern, the action part of the rule is invoked. The action part of a rule may do a number of things, such as:

Invoking a specialized computation (or external tool)

Issuing feedback to the user

Asserting new facts

Retracting current facts

This type of system can be applied to component-based design analysis by encoding all knowledge about components as facts, and furthermore encoding all details of a proposed design as facts. Typically, the design would be interpreted as a set of facts that state, for example that a particular component C is used in a particular role R and interfaces with specific other components C1 … Ck via interface types I1 … Ik.

The facts in the knowledge base encode all known information about components, inter-operability, conformance to standards, etc. For example, the knowledge base may contain a fact that asserts that a particular component C conforms to parts P1 … Pk of standard S.

The facts describing the design are then matched against the facts in the knowledge base. Any rules that fire as a result of this matching process will assert conclusions that can be drawn about the design. Because the action part of a rule can assert new facts, which are then candidates for matching within the pattern side of other rules, very detailed context-dependent chains of inference can be carried out automatically.

It is this property that makes production rules a useful tool for overcoming the risks of context-dependent component behavior.
Why Tables Are Not Sufficient

At first blush it might seem that production rules are overkill, and that all that is required is a mapping of possible component configurations to known properties. Verification of a design's meeting its requirements would then consist simply of looking up the design, or portions of it, in a table, and determining whether the required properties are listed under that pattern.

There are several reasons why such an approach will not work. The most important reason reiterates the central facet of the S.A.I.L. approach, viz., that any specific functionality is only meaningful in the context of a system's deployment and usage. The interoperability of components depends on too many contextual variables to be able to characterize the behavior simply in terms of Boolean (yes/no) answers. Relevant contextual information includes the expected usage patterns (user characteristics, message type and load distributions), platform, configuration parameters, capacity, and other descriptors -- not only of each component but also of the system as a whole and also of adjacent systems (those with which the system under consideration will interface). Each such fact has a potentially complex ripple effect. Describing this influence as a set of discrete possibilities that can be recorded in a table is infeasible, especially when the temporal aspects of system usage are key determinants.

Another reason that tables are not sufficient is that the requirements themselves are context dependent. Accurate formulation of requirements will typically refer to the particular ways in which the system is expected to be used. Abstracting from the context can only lower the degree of assurance. An effective requirement addresses operational context.

Are Production Rules Sufficient?

The flip side of the question as to whether production rules are necessary is whether they are sufficient for the task required of S.A.I.L. . Until now, automated reasoning in support of architectonics has been limited to complete knowledge situations (e.g., DEC’s R4 and other similar configurator tools) or the focus of applied theorem-proving technology. These former applications date from a time preceding the advent of component-based development. Reasoning about detailed program logic clearly requires the apparatus of a theorem proving system (and it is difficult even then).

Theorem proving has also been applied to reasoning about designs formulated in higher-level terms, such as state-based and object-based languages (e.g., VDM, CSP, and many others). Even at this higher level of abstraction, however, automated theorem proving is difficult. In addition, expressing system designs in the formal languages required of these systems has proven both difficult and expensive. Although recent work in state reduction methods, combined with increased computing power, are increasing the feasibility of logic-based methods, there is still a pressing need for an approach that provides good value (feedback) for much less investment.

Complexity Management through Abstraction

Component-based development, combined with the rest of the S.A.I.L. solution, provides a path to that goal. Since components encapsulate complex program logic and expose a relatively simply set of behaviors, we can expect a simpler form of reasoning to be required to handle only the exposed properties as opposed to the program internals. As noted previously, the complexity shifts to the interfaces between components. Production rules provide a happy medium between an oversimplified list of interface types on the one hand, and an intractably detailed description of interoperability characteristics on the other.

Dynamic context agility

For situations in which a finer-grained or more specialized type of analysis is required, the production rule approach still serves as a useful framework. Specialized tools can be invoked as part of the action side of a production rule, e.g., to perform a quantitative analysis of the temporal aspects of system behavior. The results of such an analysis can be fed back into the fact-based processing of the production rule engine, providing a flexible means of assessing the impact of different behavioral properties on the stipulated requirements of a system.

What are the advantages of Production Rules:

· Specific, useful, non-obvious results

What Production Rules aren’t:

Focussed Rule-Set Contexts --we are not attempting to model the knowledge behind common-sense reasoning.

Technology Components

OBJECT MANAGEMENT GROUP: “As one of the leading advocates of open systems and interoperability, the OMG believes that the Interoperability Clearinghouse initiative will help users realize the benefits from our combined efforts.” Says Bill Hoffman, President and COO

Leading FFRDC: “. ... the concept of the Interoperability Clearinghouse is sound and vital. Its developing role as an honest broker of all interoperability technologies, no matter what the source, is especially needed. Such efforts should be supported by any organization that wants to stop putting all of its money into maintaining archaic software and obtuse data formats, and instead start focusing on bottom-line issues of productivity and cost-effective use of information technology.”

Walking the Minefield...

Imagine you’ve parachuted into a minefield. You have a map but it only shows the safe path, not where the mines are.

The most important information to you right now is “Where am I on the map?” and “Where are mines?”

An oft-repeated Army saying goes, “The best way through a mine field is to follow somebody.”

Every successful step represents important information to everyone else, and if that information is shared effectively, everyone has a better chance of making it...

This is the collaborative model.

Business Components

Case in Point...

In the case of the recent rush to apply the Code Red worm patch, many sites have found that the patch itself breaks other parts of their system in unexpected ways, and that, amazingly, the administrators of these sites have come to expect such crises as a normal to their job.

But, these patches can be also viewed as new components to the Operating Systems they are designed to correct. Given this scenario, what would the industry pay for a tool that would assess the interoperability impact of a patch a priori within a specific site’s IT Asset configuration context?

� Industry research places the annual IT expenditures that result in these portfolios at $2.2 trillion.

� Industry research places new project failures at 54% to 72%.

� S.A.I.L. estimates conservatively that $148B annually are preventable failures.

� Steven C. McConnell “Software Project Survival Guide” Redmond, WA, Microsoft Press 1997

� Darwin Magazine ------ John has appropriate quotes

� Intelligent Enterprise Magazine, August 7th, 2001 Editor’s Page “Lightening in a Bottle - Without the proper metrics in place, IT validation is meaningless “ by � HYPERLINK "http://www.intelligententerprise.com/ports/search_editor.shtml" �Justin Kestelyn�

� EDS recently determined that it could no longer fund an internal research lab to track and evaluate relevant product offerings. EDS report to the ICH, 2001

� IEE 1471 proposed standard for Architecture Representation

i
Copyright (2001 ICHnet.org. All rights reserved. 904 Clifton Drive, Alexandria, VA 22308. Phone: (703) 768-0400. Fax: (703) 765-9295. This publication may not be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without prior written permission. Reprints are available.
2

ii
Copyright (2000 Interoperability Clearinghouse (ICH). All rights reserved. ICH Reports are published by the Interoperability Clearinghouse, 904 Clifton Drive, Suite 200, Alexandria, VA 22308. Phone: (703) 768-4975. Fax: (703) 783-8461. Web: www.ichnet.org. This publication may not be reproduced in any form or by any electronic or mechanical manes, including information storage and retrieval systems, without prior written permission. Reprints are available.

_1156087531.doc

85%

50%

25%

Vendor

claims

Functional

testing

Best Practices

Implementation success

histories

72%

“Strength of Evidence”

for this interface

_1031518759.doc
[image: image1.png]Model Business
Requirements

OSIRM ODP, IEEE 1471

41T Standards

ICH Best Practices DB

Model Technical
Requirements

evelop
Selection Criteria

Tdentily
Potential COTS

‘Technical Architectural Baselines

Technology Lexicons
Architectural Requirements

Market Opinions: Metz, Gartner, IDG-
ICH Marketecture Research, Vendor Claims

Data Sources

- Vendors - Integrators
-Users -SDOs
- Analyst

Perform Data
Compilation

455es5 Products Validate TIap Froviderto
Sclution Options Product Suites

